欢迎来到东方医疗器械网! 医疗器械分类
百科
品牌
数据库
平板探测器功能结构
发布日期:2017-02-09 | 浏览次数:
 从 1995年RSNA上推出第一台平板探测器(Flat Panel DetECTor)设备以来,随着近年平板探测技术取得飞跃性的发展,在平板探测器的研发和生产过程中,平板探测技术可分(天地智慧医疗)为直接和间接两类。

 

(一)间接能量转换

 

间接FPD的结构主要是由闪烁体或荧光体层加具有光电二极管作用的非晶硅层(amorphous Silicon,a-Si)再加TFT阵列构成。其原理为闪烁体或荧光体层经X射线曝光后,将X射线光子转换为可见光,而后由具有光电二极管作用的非晶硅层变为图像电信号,最后获得数字图像。在间接FPD的图像采集中,由于有转换为可见光的过程,因此会有光的散射问题,从而导致图像的空间分辨率极对比度解析能力的降低。换闪烁体目前主要有碘化铯(CsI,也用于影像增强器),荧光体则有硫氧化钆(GdSO,也用于增感屏),采用CsI+a-Si+TFT结构的有Trixell、瓦里安和GE公司等,而采用GdSO+a-Si+TFT有Canon等。

 

1、碘化铯 ( CsI ) + a-Si + TFT :当有 X 射线入射到 CsI 闪烁发光晶体层时,X 射线光子能量转化为可见光光子发射,可见光激发光电二极管产生电流, 这电流就在光电二极管自身的电容上积分形成储存电荷. 每个象素的储存电荷量和与之对应范围内的入射 X 射线光子能量与数量成正比。发展此类技术的有法国 Trixell 公司解像度 143um2 探测器 ( SIEMENS、Philips、汤姆逊合资 ) 、美国 GE 解像度 200um2 探测器 ( 收购的 EG & G 公司 ) 等。其原理见右图。Trixell公司(目前有西门子、飞利浦、等厂家使用,成本约9.5万美金)用的是Csl柱状晶体结构的闪烁体涂层,此种结构可以减少可见光的闪射,但由于工艺复杂难以生成大面积平板,所以采用四块小板拼接成17″×17″大块平板,拼接处图像由软件弥补。 GE、佳能(佳能、东芝、岛津使用)的平板是使用Csl或Gd2O2S:Tb涂层,因不是柱状晶体结构,所以能量损失较Trixell 严重。

 

2、硫氧化钆 ( Gd2O2S ) + a-Si + TFT :利用増感屏材料硫氧化钆 ( Gd2O2S ) 来完成 X 射线光子至可见光的转换过程。发展此类技术的公司有 Canon 公司解像度 160um2 探测器等。此类材料制造的 TFT 平板探测器成像快速、成本较低,但一般灰阶动态范围较低(12 bit 以下),与其它高阶14 bit产品图像诊断质量相比较为不足。

 

3、碘化铯 ( CsI ) / 硫氧化钆 ( Gd2O2S ) + 透镜 / 光导纤维 + CCD / CMOS :X射线先通过闪烁体或荧光体构成的可见光转换屏,将X射线光子变为可见光图像,而后通过透镜或光导纤维将可见光图像送至光学系统,由CCD采集转换为图像电信号。发展此技术的IDC、深圳蓝韵、北京万东、深圳安健等公司。深圳蓝韵的KeenRayCCD DR探测器的像素为4K×4K,16Bit图像输出,无论在图像上还是在价格上均是取代CR的最佳产品。

 

4、CsI ( Gd2O2S ) + CMOS :此类技术受制于间接能量转换空间分辨率较差的缺点,虽利用大量低解像度 CMOS 探头组成大面积矩阵,尚无法有效与 TFT 平板优势竞争。发展此类技术的公司有CaresBuilt、Tradix公司等。

 

(二)直接能量转换

 

直接FPD的结构主要是由非晶硒层(amorphous Selemium,a-Se)加薄膜半导体阵列(Thin Film Transistor array,TFT)构成的平板检测器。由于非晶硒是一种光电导材料,因此经X射线曝光后直接形成电子-空穴对,产生电信号,通过TFT检测阵列,再经A/D转换获得数字化图像。从根本上避免了间接转换方式中可见光的散射导致的图像分辨率下降的问题。虽然在技术上和生产工艺上要求很高,但却是获得高图像质量的理想方式,采用这一技术的有岛津,AnRad,Hologic公司等。

 

直接转换FPD具有理论界限值的卓越分辨率和量子探测率,不仅具备可高分辨率以清晰显示微小血管及病灶,而且具有高灵敏度可大幅降低曝光射线量。直接转换式FPD无论在低分辨率时还是在高分辨率时均具有极高的DQE值。对于大物体的检出能力与间接转换型FPD大致相同,但对于微小病变,直间转换型FPD的检出能力更强。(间接转换型的DQE低频时虽然显示高值,但在2lp/mm以上时,其值急剧减小。)直接转换式FPD研发厂家为了得到更高DQE值,获得良好的S/N特性,在降低噪音成分方面做出了更多的努力,尤其是在对图像质量影响最大的配线阻抗噪声和读取放大器的热噪声方面需进行了革新性的改良,将这两种噪声控制在最低程度,使实际测量值达到与理论值基本一致的水平。直接转换式FPD对于大物体的检出能力与间接转换型大致相同,但对于微小病变,直间转换型具有更强的检出能力。(间接转换型的DQE低频时虽然显示高值,但在2lp/mm以上时,其值急剧减小。)

 

1. 非晶硒探测器结构及其成像原理:(直接转换)  

 

直接数字化X线成像的平板探测器,利用了非晶硒的光电导性,将X线直接转换成电信号,形成全数字化影像。

 

成像原理:X线粒子射入加有高电压的非晶硒感光层,其中原本定向移动的电荷发生电导率的改变,伴随着空穴电子对分布不均匀的形成,感光层内就有了不均匀聚集的电荷通过薄膜晶体管阵列转换为可测的电信号,再进行A/D转换,成为可直接由计算机进行处理的数字信号

 

特性:⑴直接光电转换 ⑵直接读出 ⑶量子检测率(DQE)较高

⑷曝光宽容度大 ⑸后处理功能强大

 

FPD对环境,温度,湿度要求较高,需要较高的偏直电压,刷新速度慢,仍不能满足动态摄影。所以不常用。

 

探测器有效探测面积:35X43cm

采集矩阵:25603072

像素大小:139×139μm

采集像素A/D转换位数:14bit

空间分辨率:3.6lp/mm

 

2. 非晶硅探测器结构及其成像原理:(间接转换)(天地智慧医疗)  分碘化铯(CsI)+非晶硅和硫氧化钆GOS+非晶硅(天地智慧医疗)  结构由碘化铯闪烁体层、非晶硅光电二极管阵列、行驱动电路以及图像信号读取电路四部分。与非晶硒平板探测器的主要区别在于荧光材料层和探测元阵列层的不同,其信号读出、放大、A/D转换和输出等部分基本相同。

 

非晶硅平板探测器,是一种以非晶硅光电二极管阵列为核心的X线影像探测器。它利用碘化铯(CsI)的特性, 将入射后的X线光子转换成可见光,再由具有光电二极管作用的非晶硅阵列变为电信号,通过外围电路检出及A/D变换,从而获得数字化图像。由于经历了X线、可见光、电荷图像、数字图像的成像过程,通常被称作间接转换型平板探测器。

文章推荐

找产品

添加客服微信

为您精准推荐